counter easy hit

Rabu, 17 Oktober 2018

Book Studies of Black Hole Horizons PDF Free

Studies of Black Hole Horizons PDF
By:Marina Martínez Montero
Published on 2016 by


This thesis has focused entirely on classical and thermodynamical aspects of black hole physics. We have developed four different projects involving different kinds of black holes. 1 BLACK BRANES IN A BOX Neutral black branes with extended horizons are dynamically unstable to long wavelength perturbations along their horizons; this instability is known as the Gregory-Laflamme instability. In some regimes, the dynamics of black branes can be captured by an effec¬tive hydrodynamic description. We have studied the effective hydrodynamics of neutral black branes inside a cylindrical cavity to investigate their dynamic and thermodynamic instabilities. We have used the size of the box as a control parameter for stability (smaller cavities increase rigidity and contribute to the stability of the solutions); we have ob¬served that both instabilities disappear at the same critical value of the cavity radius. We have discussed the Correlated Stability Conjecture, which relates thermodynamic and dynamic instabilities in these objects and we have argued that its correct interpre¬tation is given by the Correlated Hydrodynamic Stability (CHS). The CHS relates the presence of unstable hydrodynamic modes to the local thermodynamic instability; this is transparent in our approach. In the effective fluid description we have computed the specific quantities that characterize the fluid. Finally we have studied the system close to the critical point at which the instability disappears and we have obtained that the wavenumber that marks the onset of the instability vanishes with a critical behaviour ruled by a critical exponent of 1/2. 2 BLACK STRING FLOW We have constructed an event horizon describing a heat flow, that remains constant in time, between to asymptotic regions at constant temperature. This horizon is the smooth interpolation between the horizon of a black string and a planar acceleration horizon. This was the first exact description of a flowing horizon connecting a stringlike horizon with a planar one (this can also be an infinitely big spherical black hole); the construction is valid for any number of dimensions greater than four. We obtained the horizon generators as well as the exact geometry and we showed that this horizon resembles that of flowing funnels. We computed a surface gravity that approaches on one end, the black string's surface gravity, and on the other, the infinite black hole's surface gravity which is 0. We also computed the expansion associated to the horizon generators and it vanishes in both asymptotic regions; thus reflecting the property that the black string flow horizon interpolates between two asymptotic horizons, each of which is asymptotically in equilibrium at different temperature. This construction shows that stationary black holes with non-killing horizons are possible with non-AdS asymptotics. 3 BUMPY BLACK HOLES We have constructed numerically three new families of stationary black holes with a single angular momentum. These black holes have spherical topology but they differ from the Myers Perry solution (higher dimensional generalisation of Kerr solution) in that the radius of the sphere transverse to rotation varies non-monotonically with the polar angle. We have seen that half of these solutions connect, in the space of solutions, the Myers Perry family with other families featuring non-spherical topology such as the black ring, the black saturn, etc. We found strong evidence for the presence of cones in the horizons of solutions close to the topological transition in solution space. The other half of the solutions spread widely in the rotation plane and develop a singularity along their equator. These probably do not connect to other stationary black hole branches. We have also studied stability properties of all branches. 4 BLACK HOLE MERGER We have described in an exact analytic way the event horizon of a black hole merger in the extreme mass ratio (EMR) limit; we have done it for four and five dimensions. Curiously numerical computation in which the ratio of the masses is large are difficult and not very well studied. We hope our exact result can serve as check/guide for future results in the area. We constructed the event horizon of this dynamical process by computing its null generators. We extracted a number of parameters that characterise the merger. We identified the line of caustics, the critical radius at which both horizons touch, the big horizon relaxation timescale among other things. We showed that our hypersurface describes all possible mergers, in the EMR limit, for which the small black hole is non-rotating. Finally we analysed the instants shortly before and after the pinch-on and found evidence for critical behaviour in the forming of the cusp and in the initial growth of the throat.

This Book was ranked at 24 by Google Books for keyword Black hole.

Book ID of Studies of Black Hole Horizons's Books is MRipnQAACAAJ, Book which was written byMarina Martínez Monterohave ETAG "yopq/H3Ohxw"

Book which was published by since 2016 have ISBNs, ISBN 13 Code is and ISBN 10 Code is

Reading Mode in Text Status is false and Reading Mode in Image Status is false

Book which have "134 Pages" is Printed at BOOK under Category

Book was written in en

eBook Version Availability Status at PDF is falseand in ePub is false

Book Preview


Download Studies of Black Hole Horizons PDF Free

Download Studies of Black Hole Horizons Books Free

Download Studies of Black Hole Horizons Free

Download Studies of Black Hole Horizons PDF

Download Studies of Black Hole Horizons Books

Tidak ada komentar:

Posting Komentar